Почему углерод играет ключевую роль в жизни клетки и составляет химическую основу жизни?

4 ноября 2021

Углерод — элемент номер шесть. Прямо в середине первой строки периодической таблицы химических элементов.  Ну и что?  Углерод основа жизни – это самый важный элемент живых организмов. Без этого элемента жизнь, какой мы ее знаем, не существовала бы.

Как вы увидите, шестой элемент периодической таблицы является центральным в соединениях, необходимых для жизни.

Значение углерода

Углерод – соединение, содержащееся главным образом в живых организмах, известно как органическое соединение.

Органические соединения составляют клетки и другие структуры организмов и осуществляют жизненные процессы. Углерод является основным элементом в органических соединениях, поэтому элемент необходим для жизни на Земле. Углерод основа жизни и она, какой мы ее знаем, не могла бы существовать. Теоретически, вроде бы возможны другие формы жизни, но человечество их не знает.

Почему углерод главный для жизни?

Почему углерод так важен для жизни? Причина — способность образовывать устойчивые связи со многими элементами, в том числе и с самим собой. Это свойство позволяет шестому элементу образовывать огромное разнообразие очень больших и сложных молекул.

Углерод в химическом составе живых существ

Поскольку живые существа являются результатом ряда химических реакций в определенный момент времени, и, как уже упоминалось, углерод играет фундаментальную роль в этих реакциях, было бы невозможно представить жизнь без присутствия этого элемента..

Универсальность углерода позволила ему присутствовать в клеточных и микроорганических процессах, которые вызывают жизненно важные компоненты организма: жиры, белки, липиды, которые помогают формированию неврологических систем, и нуклеиновые кислоты, которые хранят ДНК через ДНК. генетический код каждого человека.

Он также присутствует во всех тех элементах, которые потребляют живые существа, чтобы получить энергию и гарантировать свою жизнь.

Углерод в атмосферном значении

Углерод, в форме углекислого газа, представляет собой газ, присутствующий на атмосферном уровне, естественно.

Двуокись углерода препятствует выходу внутренней температуры земли, а ее постоянное присутствие позволяет ее поглощению другими существами выполнять свои циклы питания.

Это ключевой компонент для поддержания различных уровней жизни на планете. Однако на неестественных уровнях, вызванных чрезмерным выбросом человека, он может в конечном итоге содержать слишком много температуры, создавая парниковый эффект. Тем не менее, это будет иметь решающее значение для сохранения жизни в этих новых условиях.

Перенос углерода между живыми существами

Порядок питания в экосистемах тесно связан с переносом углерода между живыми существами, которые участвуют в этих взаимодействиях.

Например, животные обычно получают углерод от первичных производителей и передают его всем, кто находится выше в цепи.

В конце концов углерод возвращается в атмосферу в виде диоксида углерода, где он участвует в каком-то другом органическом процессе.

Углерод в клеточном дыхании

Углерод, наряду с водородом и кислородом, способствует процессу высвобождения энергии через глюкозу в организме, вырабатывая аденозинтрифосфат, который считается источником энергии на клеточном уровне.

Углерод облегчает процесс окисления глюкозы и выделения энергии, превращаясь в сам углекислый газ и выводясь из организма.

Углерод в фотосинтезе

Другое клеточное явление универсального значения – это то, на что способны только растения: фотосинтез; интеграция энергии, поглощенной непосредственно от Солнца, с углеродом, поглощенным из атмосферной среды.Результатом этого процесса является питание растений и продление их жизненного цикла.

Фотосинтез не только гарантирует жизнь растений, но также способствует поддержанию теплового и атмосферного уровня под определенным контролем, а также обеспечивает пищу для других живых существ.

Углерод играет ключевую роль в фотосинтезе, а также в естественном цикле вокруг живых существ..

Углерод в дыхании животных

Хотя животные не могут получать прямую энергию от Солнца для своей пищи, почти все продукты, которые они могут потреблять, содержат в своем составе высокое содержание углерода.

Такое потребление продуктов на основе углерода вызывает у животных процесс, который приводит к выработке энергии для жизни.

Подача углерода животным через пищу обеспечивает непрерывное производство клеток у этих существ..В конце процесса животные могут выделять углерод в виде отходов в виде углекислого газа, который затем поглощается растениями для осуществления своих собственных процессов.

Углерод в естественном разложении

Живые существа действуют как большие запасы углерода в течение своей жизни; атомы всегда работают над непрерывной регенерацией самых основных компонентов организма.

Когда существо умирает, углерод начинает новый процесс, который возвращается в окружающую среду и используется повторно. Есть некоторые маленькие организмы, называемые дезинтеграторами или разлагающими веществами, которые обнаруживаются как на суше, так и в воде, и несут ответственность за поглощение остатков тела без жизни, а также за хранение атомов углерода, а затем за выброс их в окружающую среду.

Углерод – океанический регулятор

Углерод также присутствует в больших океанских телах планеты, как правило, в форме бикарбонат-ионов; результат растворения углекислого газа, присутствующего в атмосфере.

Углерод подвергается реакции, которая переводит его из газообразного состояния в жидкое и превращается в бикарбонат-ионы..В океанах бикарбонат-ионы функционируют в качестве регуляторов рН, необходимых для создания идеальных химических условий, способствующих формированию морской флоры и фауны различных размеров, освобождая место для пищевых цепей океанических видов.

Углерод может быть выпущен из океана в атмосферу через поверхность океана; однако эти количества очень малы.

Возникновение «жизненного» элемента углерода

Каждый атом углерода, находящийся на Земле и во Вселенной, возник в ядре красных гигантов при температуре около 100 миллионов градусов.

Атомы углерода как сказано выше, являются основой любого живого организма, ибо обладают способностью соединяться в длинные цепочки и создавать сложные органические молекулы.

Углеродные атомы, из которых построен человеческий организм и биосфера в целом, возникали в те далекие времена, когда еще не существовали Солнце и Солнечная система, когда не было еще даже полимерной цепи, из которой позднее родилось Солнце и все его семейство. Именно в звездах-гигантах возникали тогда из атомов гелия атомы углерода. Это произошло более семи миллиардов лет тому назад. Из звезд атомы углерода потом попали в межзвездное пространство. Там они смешались с межзвездным веществом, из которого позднее возникли полимерные цепи, включая и создание нашей Солнечной системы.

Таким образом, углерод основа жизни которая переместилась из недр старых красных гигантов на нашу планету, а отсюда в земные растения и, наконец, вместе с пищей — в человеческий организм. Именно тогда зародилась жизнь на Земле.

Можно сказать, что без красных гигантов, существовавших семь миллиардов лет назад, на Земле не было бы углерода, а, следовательно, и жизни. Итак, с точки зрения астрономии нашими далекими предками являются именно красные гиганты.

Пищевые источники углерода

Углерод находится во всех пищевых продуктах в виде соответствующих органических соединений. Человеческий организм не способен усваивать неорганические соединения углерода.

Дефицит углерода

Дефицит углерода не наблюдается.

Избыток углерода

Избыток углерода не наблюдается. Возможны отравления токсичными соединениями оксид углерода (II), четыреххлористый углерод, сероуглерод, соли цианистой кислоты, бензол и другие.

Выводы

Согласно описанному выше, можно сделать следующие выводы, касаемо того, почему углерод играет ключевую роль в жизни клетки и составляет химическую основу жизни:

  • Жизнь основана на углероде — органическая химия изучает соединения, в которых он является центральным элементом.
  • Свойства углерода — основа жизни всех органических молекул, образующих живую материю.
  • Углерод является таким универсальным элементом, потому что он может образовывать четыре ковалентные связи.
  • Углеродные скелеты могут различаться по длине, ветвлению и кольцевой структуре.
  • Функциональные группы органических молекул — это части, участвующие в химических реакциях.
  • Органические молекулы, важные для жизни, включают в себя относительно небольшие мономеры, а также крупные полимеры.

 

Источники:

  • https://v-nayke.ru/?p=16379
  • https://ru.thpanorama.com/articles/biologa/importancia-del-carbono-en-los-seres-vivos-8-razones.html
  • https://ru1.warbletoncouncil.org/importancia-carbono-seres-vivos-10687
  • https://www.moydietolog.ru/uglerod
Оцените статью:
[Всего голосов: 1    Средний: 1/5]