Углерод – что это?

4 ноября 2021

Углерод – важнейший химический элемент периодической таблицы Менделеева. Без него, как и без кислорода и водорода немыслимой была бы сама Жизнь. Можно без преувеличения сказать, что жизнь всех живых существ от амебы до человека построена именно из соединений углерода. Углерод – биогенный элемент составляющий основу жизни на нашей планете. Будучи структурной единицей огромного числа различных органических соединений, он участвует и в построении живых организмов и в обеспечении их жизнедеятельности. Даже возникновение самой Жизни рассматривается учеными как сложный процесс эволюции углеродных соединений. А какие химические и физические свойства этого чудесного элемента, история его открытие и современное применение в химии, читайте об этом далее.

История открытия углерода

На самом деле углерод был известен человеку еще с глубокой древности в виде своих аллотропных модификаций: алмаза и графита. Помимо этого углерод в виде древесного угля активно применялся при выплавке металлов. От угля происходит и само название углерода, как химического элемента.

Но в те далекие времена люди пользовались углеродом в виде угля, или любовались им же, в виде алмазов, неосознанно, без понимания того, какой важный химический элемент стоит за всем этим.

Научное открытие углерода произошло в 1791 году, когда английский химик Теннант впервые получил свободный углерод. Для получения углерода он пропускал пары фосфора над прокаленным мелом. В результате этой химической реакции образовались фосфат кальция и чистый углерод. Впрочем, этому опыту предшествовали и другие искания, например выдающийся французский химик Лавуазье поставил опыт по сжиганию алмаза при помощи большой зажигательной машины. Драгоценный алмаз сгорел без остатка, после чего ученый пришел к выводу, что алмаз представляет собой ничто иное как кристаллический углерод.

Интересно, что в этих опытах совместно с алмазом пробовали сжигать и другие драгоценные камни, к примеру, рубин. Но другие камни выдерживали высокую температуру, только алмаз сгорал без остатка, что и обратило внимание на его отличную химическую природу.

Место углерода в таблице Менделеева

В основе расположения химических элементов в периодической системе Менделеева лежит их атомный вес, рассчитанный относительно атомного веса водорода. Атомная масса углерода составляет 12,011, согласно ней он занимает почетное 6-е место в таблице Менделеева и обозначается латинской литерой С.

Помимо этого следует обратить внимание на следующие характеристики углерода:

  • Природный углерод состоит из смеси двух стабильных изотопов 12С (98,892%) и 13С (1,108%)
  • Помимо этого известно 6 радиоактивных изотопов углерода. Один из них, изотоп 14С с периодом полураспада 5,73*10лет в небольших количествах образуется в верхних слоях атмосферы нашей планеты под действием космического излучения.

Строение атома углерода

Атом углерода имеет 2 оболочки (как впрочем, и все элементы, расположенные во втором периоде) и 6 электронов: 1s22s22p2. Четыре валентных электрона находятся на внешнем электронном уровне атома углерода. А оставшиеся два электрона находятся на отдельных p-орбиталях, при этом они являются неспаренными.

Физические свойства углерода

Своими физическими свойствами углерод типичный неметалл. При этом он образует множество аллотропных модификаций («аллотропные» означает существование двух и более разных веществ из одного химического элемента): наиболее популярными из них являются алмаз, графит, уголь, сажа. При этом алмаз – одно из самых твердых веществ, представляющих углерод.

Разумеется, разные аллотропные модификации углерода имеют и разные физические свойства. Если алмаз типичное твердое тело, то, к примеру, жидкий углерод, который можно получить только при определенном внешнем давлении, обладает совершенно иными физическими свойствами, нежели алмаз или графит.

Химические свойства углерода

В обычных условиях углерод, как правило, химически инертен, но при высоких температурах он может вступать в химические взаимодействия со многими другими элементами, обычно проявляя сильные восстановительные свойства. Приведем примеры химических реакций углерода как восстановителя с:

  • с кислородом
    C0 + O2  –=  COуглекислый газ
    при недостатке кислорода — неполное сгорание:
    2C0 + O2  –= 2C+2O угарный газ
  • со фтором
    С + 2F2 = CF4
  • с водяным паром
    C0 + H2O  –1200°= С+2O + Hводяной газ
  • с оксидами металлов. Таким образом, выплавляют металл из руды.
    C0 + 2CuO  –=  2Cu + C+4O2
  • с кислотами – окислителями:
    C0 + 2H2SO4(конц.) = С+4O2­ + 2SO2­ + 2H2O
    С0 + 4HNO3(конц.) = С+4O2­ + 4NO2­ + 2H2O
  • с серой образует сероуглерод:
    С + 2S2 = СS2.

Порой углерод может выступать и как окислитель, образуя карбиды при вступлении в химические реакции с некоторыми металлами:

4Al + 3C0 = Al4C3

Ca + 2C0 = CaC2-4

Вступая в реакцию с водородом, углерод образует метан:

C0 + 2H2 = CH4

Роль углерода в природе

В земной коре содержание углерода составляет всего лишь 0,15%. Несмотря на эту кажущуюся маленькой цифру, стоит заметить, что углерод непрерывно участвует в природном круговороте из земной коры через биосферу в атмосферу и наоборот. Также именно из углерода состоят такие ценные ресурсы как нефть, уголь, торф, известняки и природный газ. И как мы писали в начале нашей статьи, углерод – основа жизни. Скажем, в теле взрослого человека с весом в 70 кг имеется около 13 кг углерода. Это только в одном человека, примерно в таких же пропорциях углерод содержится в телах всех других живых существ, растений и животных.

Распространенность углерода

Углерод является четвертым по распространенности химическим элементом во Вселенной по массе после водорода, гелия и кислорода. Углерод изобилует в Солнце, звездах, кометах и атмосферах большинства планет. Некоторые метеориты содержат микроскопические алмазы, которые были сформированы, когда солнечная система все еще была протопланетным диском. Микроскопические алмазы также могут образовываться при интенсивном давлении и высокой температуре в местах воздействия метеорита. В 2014 году, НАСА объявила об обновленной базе данных для отслеживания полициклических ароматических углеводородов (ПАУ) во Вселенной.

Более 20% углерода во Вселенной могут быть связаны с ПАУ, комплексными соединениями углерода и водорода без кислорода 12). Эти соединения фигурируют в мировой гипотезе ПАУ, где они, предположительно, играют роль в абиогенезе и формировании жизни. Похоже, что ПАУ были сформированы «через пару миллиардов лет» после Большого взрыва, широко распространены во вселенной и связаны с новыми звездами и экзопланетами. По оценкам, твердая оболочка земли, в целом, содержит 730 чнм углерода, при этом 2000 чнм содержатся в сердцевине и 120 чнм – в комбинированной мантии и коре 13). Поскольку масса земли составляет 5,9 72 × 1024 кг, это будет означать 4360 миллионов гигатонн углерода. Это намного больше, чем количество углерода в океанах или атмосфере (ниже).

В сочетании с кислородом в углекислом газе, углерод находится в атмосфере Земли (приблизительно 810 гигатонн углерода) и растворяется во всех водоемах (приблизительно 36000 гигатонн углерода). В биосфере присутствует около 1900 гигатонн углерода. Углеводороды (такие как уголь, нефть и природный газ) также содержат углерод. Угольные «резервы» (а не «ресурсы») составляют около 900 гигатонн с, возможно, 18 000 Гт ресурсов.

Запасы нефти составляют около 150 гигатонн. Доказанные источники природного газа составляют около 175 1012 кубических метров (содержащих около 105 гигатонн углерода), однако в исследованиях оценивается еще 900 1012 кубических метров «нетрадиционных» месторождений, таких как сланцевый газ, что составляет около 540 гигатонн углерода. Углерод также был обнаружен в гидратах метана в полярных регионах и под морями.

По разным оценкам, количество этого углерода составляет 500, 2500 Гт, или 3000 Гт 14). В прошлом, количество углеводородов было больше. Согласно одному источнику, в период с 1751 по 2008 годы около 347 гигатонн углерода было выброшено в атмосферу в виде углекислого газа в атмосферу от сжигания ископаемого топлива. Другой источник добавляет количество, добавленное в атмосферу в период с 1750 года до 879 Гт, а общее количество в атмосфере, море и земле (например, торфяные болота) составляет почти 2000 Гт 15).

Углерод является составной частью (12% по массе) очень больших масс карбонатных пород (известняк, доломит, мрамор и т. д.).

Уголь содержит очень большое количество углерода (антрацит содержит 92-98% углерода) и является крупнейшим коммерческим источником минерального углерода, на который приходится 4000 гигатонн или 80% ископаемого топлива. Что касается индивидуальных аллотропов углерода, графит содержится в больших количествах в Соединенных Штатах (в основном, в Нью-Йорке и Техасе), в России, Мексике, Гренландии и Индии.

Природные алмазы встречаются в горном кимберлите, содержащемся в древних вулканических «шеях» или «трубах». Большинство алмазных месторождений находится в Африке, особенно в Южной Африке, Намибии, Ботсване, Республике Конго и Сьерра-Леоне. Алмазные месторождения также обнаружены в Арканзасе, Канаде, Российской Арктике, Бразилии, а также в Северной и Западной Австралии. Теперь бриллианты также извлекают со дна океана у мыса Доброй Надежды. Алмазы встречаются естественным образом, но сейчас производится около 30% всех промышленных алмазов, используемых в США. Углерод-14 образуется в верхних слоях тропосферы и стратосферы на высотах 9-15 км в реакции, которая осаждается космическими лучами.

Производятся тепловые нейтроны, которые сталкиваются с ядрами азота-14, образуя углерод-14 и протон. Таким образом, 1,2 × 1010% атмосферного углекислого газа содержит углерод-14.  Астероиды, богатые углеродом, относительно преобладают во внешних частях пояса астероидов в нашей солнечной системе. Эти астероиды еще не были напрямую исследованы учеными. Астероиды могут использоваться в гипотетической угледобыче на основе космического пространства, что может быть возможно в будущем, но в настоящее время технологически невозможно.

Аллотропные модификации углерода

Углерод — уникальный химический элемент, который образует так называемые аллотропные модификации, или, проще говоря, различные формы. Эти модификации подразделяются кристаллические, аморфные и в виде кластеров.

Кристаллические модификации имеют правильную кристаллическую решётку. К этой группе относятся: алмаз, фуллерит, графит, лонсдейлит, углеродные волокна и трубки. Подавляющее большинство кристаллических модификаций углерода на первых местах в рейтинге «Самые твёрдые материалы в мире» .

Аллотропные формы углерода:

  1. лонсдейлит;
  2. алмаз;
  3. графит;
  4. аморфный углерод;
  5. C60 (фуллерен);
  6. графен;
  7. однослойная нанотрубка.

Аморфные формы образованы углеродом с небольшими примесями других химических элементов. Основные представители этой группы: уголь (каменный, древесный, активированный), сажа, антрацит.

Самыми сложными и высокотехнологичными являются соединения углерода в виде кластеров. Кластеры — это особая структура, при которой атомы углерода расположены таким образом, что образуют полую форму, которая заполнена изнутри атомами других элементов, например, воды. В этой группе не так уж и много представителей, в неё входят углеродные наноконусы, астралены и диуглерод.

Применение углерода

Можно сказать, что углерод неразрывно связан с самим развитием человеческой цивилизации. Именно из соединений с участием углерода образованы основные топлива, благодаря которым ездят машины, летают самолеты, вы можете приготовить себе еду и обогреть свой дом в холодную пору – это нефть и газ. Помимо этого соединения углерода активно используются в химической и металлургической промышленности, в фармацевтике и строительстве. Алмазы, будучи аллотропной модификацией углерода используются в ювелирном деле и ракетостроении.

Из соединений углерода изготавливаются различные смазки для механизмов, техническое оборудование и многое другое. Промышленность в настоящее время не может обойтись без углерода, он используется везде!

Токсическое действие углерода

Уг­ле­род по­сту­па­ет в окру­жа­ю­щую среду в со­ста­ве вы­хлоп­ных газов ав­то­транс­пор­та, при сжи­га­нии угля на ТЭС, при от­кры­тых раз­ра­бот­ках угля, под­зем­ной его га­зи­фи­ка­ции, по­лу­че­нии уголь­ных кон­цен­тра­тов и др. Кон­цен­тра­ция уг­ле­ро­да над ис­точ­ни­ка­ми го­ре­ния 100—400 мкг/м³, круп­ны­ми го­ро­да­ми 2,4—15,9 мкг/м³, сель­ски­ми рай­о­на­ми 0,5—0,8 мкг/м³. С га­зо­аэро­золь­ны­ми вы­бро­са­ми АЭС в ат­мо­сфе­ру по­сту­па­ет (6—15)⋅109 Бк/сутки 14СО2.

Вы­со­кое со­дер­жа­ние уг­ле­ро­да в ат­мо­сфер­ных аэро­зо­лях ведет к по­вы­ше­нию за­бо­ле­ва­е­мо­сти на­се­ле­ния, осо­бен­но верх­них ды­ха­тель­ных путей и лёг­ких. Про­фес­си­о­наль­ные за­бо­ле­ва­ния — в ос­нов­ном ан­тра­коз и пы­ле­вой брон­хит. В воз­ду­хе ра­бо­чей зоны ПДК, мг/м³: алмаз 8,0, ан­тра­цит и кокс 6,0, ка­мен­ный уголь 10,0, тех­ни­че­ский уг­ле­род и уг­ле­род­ная пыль 4,0; в ат­мо­сфер­ном воз­ду­хе мак­си­маль­ная ра­зо­вая 0,15, сред­не­су­точ­ная 0,05 мг/м³.

Ток­си­че­ское дей­ствие 14С, во­шед­ше­го в со­став био­ло­ги­че­ских мо­ле­кул (осо­бен­но в ДНК и РНК), опре­де­ля­ет­ся его ра­ди­а­ци­он­ным вза­и­мо­дей­стви­ем с β-ча­сти­ца­ми (14С (β) → 14N), при­во­дя­щим к из­ме­не­нию хи­ми­че­ско­го со­ста­ва мо­ле­ку­лы. До­пу­сти­мая кон­цен­тра­ция 14С в воз­ду­хе ра­бо­чей зоны ДКА 1,3 Бк/л, в ат­мо­сфер­ном воз­ду­хе ДКБ 4,4 Бк/л, в воде 3,0⋅104 Бк/л, пре­дель­но до­пу­сти­мое по­ступ­ле­ние через ор­га­ны ды­ха­ния 3,2⋅108 Бк/год.

 

Источники:

  • https://www.poznavayka.org/himiya/uglerod
  • https://wiki2.org/ru/%D0%A3%D0%B3%D0%BB%D0%B5%D1%80%D0%BE%D0%B4
  • http://lifebio.wiki/%D1%83%D0%B3%D0%BB%D0%B5%D1%80%D0%BE%D0%B4
  • https://www.alto-lab.ru/elements/uglerod
Оцените статью:
[Всего голосов: 0    Средний: 0/5]