Какова температура плавления ртути?

26 ноября 2021

Температура плавления ртути характеризует момент перехода металла из твердого состояния в жидкость. Свойства живого серебра (argentum vivum в переводе с латинского) расширяют границы применения металла в разных сферах производства с учетом мер безопасности, связанных с его использованием.

Общая характеристика ртути

Химические элементы таблицы Менделеева имеют строго упорядоченное расположение, и каждый обладает своей электронной конфигурацией атома, говорящей о его свойствах. Ртуть не исключение. Строение ее внешней и предвнешней электронной оболочки следующее: 5s25p65d106s2.

Возможные степени окисления: +1, +2. Оксид и гидроксид ртути – слабо основные, иногда амфотерные по характеру соединения. Химический символ элемента №80 – Hg, латинское произношение “гидраргирум”. Русское название происходит от праславянского языка, на котором оно переводилось как “катиться”. У других народов произношение и название разное. Часто сам элемент и образуемые им простые и сложные вещества называют меркуратами, меркурием. Такое название происходит из древних времен, когда сопоставляли Hg (элемент) с серебром, придавали ему второе значение после золота. Солнце – символ аурум Au, Меркурий – символ гидраргирум Hg.

У древних народов было поверье, что существует семь основных металлов, среди которых ртуть. Группа из них находила отражение в небесных телах. То есть золото ассоциировалось с Солнцем, железо – с Марсом, ртуть – с Меркурием и так далее.

История открытия ртути

О ртути было известно примерно за 1500 лет до нашей эры. Уже тогда ее описывали как “жидкое серебро”, подвижный, необычный и загадочный металл. Добывать ее тоже научились еще в древности.

Конечно, изучить ее свойства возможности не было, ведь еще не была сформирована как таковая химия. Ртуть окутывали пеленой тайны и магии, считали необычным веществом, близким к серебру и способным превратиться в золото, если сделать ее твердой. Однако способов получить чистую ртуть в твердом агрегатном состоянии не было, и алхимические изыскания не увенчались успехом.

Основные страны, где с самой древности применялась и добывалась ртуть, это:

  • Китай;
  • Месопотамия;
  • Индия;
  • Египет.

Однако получить данный металл именно в чистом виде удалось только в XVIII веке, это сделал шведский химик Брандт. При этом ни им, ни до этого момента так и не были приведены доказательства металличности вещества. Данный вопрос прояснили М. В. Ломоносов и Браун. Именно эти ученые первыми сумели заморозить ртуть и таким образом подтвердить, что для нее характерны все свойства металлов – блеск, электропроводность, ковкость и пластичность, металлическая кристаллическая решетка.

На сегодняшний день получены самые разные соединения ртути, она используется в разных областях технического производства.

Вещество ртуть

Ртуть, как простое вещество, представляет собой жидкость (при нормальных условиях) серебристо-белую, подвижную, легколетучую. Типичный пример, где используется жидкая ртуть в чистом виде, – это термометры, градусники для измерения температуры.

Если перевести ртуть в твердое состояние, то она будет представлять собой полупрозрачные кристаллы, не имеющие запаха. Пары этого вещества бесцветные, очень ядовитые.

Физические свойства ртути

По своим физическим свойствам ртуть – это единственный представитель, который при обычных условиях способен существовать в виде жидкости. По всем остальным свойствам он полностью подходит под общие характеристики остальных представителей категории.

Основные свойства следующие.

  1. Агрегатное состояние: обычные условия – жидкость, твердые кристаллы – не выше 352оС, пары – свыше 79 К.
  2. Растворяется в бензоле, диоксане, кристаллы в воде. Обладает способностью не смачивать стекло.
  3. Обладает диамагнитными свойствами.
  4. Теплопроводна.

Плавление ртути происходит при отрицательной температуре -38,83оС. Поэтому данное вещество относится к группе взрывоопасных при нагревании. Внутренний запас энергии соединения при этом увеличивается в несколько раз.

Химические свойства ртути

Известны следующие группы соединений на основе ртути в разных степенях окисления:

  • сульфаты, сульфиды;
  • хлориды;
  • нитраты;
  • гидроксиды;
  • оксиды;
  • комплексные соединения;
  • металлоорганические вещества;
  • интерметаллические;
  • сплавы с другими металлами – амальгамы.

Температура плавления ртути позволяет ей образовывать как жидкие, так и твердые амальгамы. В таких сплавах металлы лишаются своей активности, становясь более инертными.

Реакция взаимодействия ртути с кислородом возможна только при достаточно высокой температуре, несмотря на сильную окислительную способность неметалла. При условиях свыше 380оС в результате такого синтеза образуется оксид металла со степенью окисления последнего +2.

С кислотами, щелочами, неметаллами в свободном виде металл не вступает в химическое взаимодействие, оставаясь в жидком состоянии.

С галогенами реагирует достаточно медленно и только на холоде, что и подтверждает температура плавления ртути. Хорошим окислителем для нее является перманганат калия.

Месторождения ртути

Уникальное, старейшее и крупнейшее в мире месторождение ртутных руд находится в Испании, в местности Альмаден. Добычу жидкого серебра там вели еще до новой эры.

Словенский город Идрия — крупнейший в Европе центр добычи ртути с XV века

Кроме этого, запасами ртути обладают:

  • Дагестан;
  • Словения;
  • Армения;
  • Киргизия;
  • Чукотка.

Самородная ртуть происхождением из киноварных руд.

Рассказ И. Ефремова «Озеро горных духов» получил неожиданное продолжение. В 2021 году на Аляске, под вечной мерзлотой обнаружили огромное озеро ртути. Ее там больше, чем общих запасов жидкого металла на планете. Пока мерзлота держит металл, опасности нет. Стоит растаять льдам — «живое смертоносное серебро» попадет в океан. Это будет глобальная экологическая катастрофа, а возможно, и конец жизни на Земле.

Нахождение ртути в природе

Содержится ртуть в земной коре, Мировом океане, рудах и минералах. Если говорить об общем процентном количестве ртути в земных недрах, то это примерно 0,000001%. В целом можно сказать, что данный элемент рассеянный. Основные минералы и руды, в состав которых входит этот металл, следующие:

  • киноварь;
  • кварц;
  • халцедон;
  • слюда;
  • карбонаты;
  • свинцово-цинковые руды.

В природе ртуть все время совершает круговорот и принимает участие в обменных процессах всех оболочек Земли.

Получение ртути

Основной способ получения – это обработка минерала киноварь. Также возможен металлургический способ при помощи восстановителей. Когда используют первый метод, то минерал подвергается жесткому обжигу в кислороде. В результате образуются пары металла. Так как температура плавления ртути очень низкая, а кипения, напротив, высокая, то сбор и конденсация паров при получении обжигом трудностей не вызывают. Данный способ обработки сульфида ртути применяли еще в древности для получения металла в чистом виде.

Второй метод основан на извлечении ртути также из сульфида при помощи использования сильного восстановителя. Такого, как железо. Сбор продукта осуществляется тем же способом, что и в предыдущем случае.

Применение ртути

Ртуть широко применяется в разных сферах жизни:

  1. В сельском хозяйстве (как гербицид, для протравки семян).
  2. В медицине (лекарственные препараты).
  3. Как катализатор в изготовлении уксусной кислоты.
  4. Для изготовления приборов (термометры, полярографы, барометры, вакуумные насосы).
  5. Люминесцентные лампы, выпрямители.
  6. В качестве пигмента.
  7. «Гремучая ртуть» применяется в качестве детонатора.
  8. В атомно-водородной энергетике, чтобы разделить воду на водород и кислород.

В первых реакторах на БН (быстрых нейтронах) теплоносителем была ртуть.

Ртуть применяется для изготовления точных измерительных приборов для определения температуры и давления. Сегодня в электрохимическом производстве широко используются ртутные выпрямители тока.

Разнообразные свойства ртути дали возможность использовать ее в самых разных сферах промышленности

В медицинской отрасли для проведения профилактических работ в качестве источников ультрафиолетового спектра применяются ртутные (газоразрядные) лампы, всем известные градусники для измерения температуры тела содержат этот химический элемент.

В связи с тем, что меркурий токсичен, его не используют для изготовления медицинских препаратов. Хотя до середины 70-х годов ее активно применяли для производства мази от педикулеза.

Измерительные приборы для низкотемпературных условий содержат амальгаму таллия, которая в отличие от чистой ртути застывает при температуре – 60°C. Сочетание 2 токсичных металлов значительно расширяет границы использования.

За рубежом кипящую ртуть используют в качестве охладителя. Ее преимущество поддерживать постоянную температуру позволяет интенсивно отводить тепло от пространства катализатора. Для увеличения коэффициента отдачи в ртуть добавляют натрий для образования амальгамы.

С целью размягчения кадмия, олова и серебра меркурий используют в стоматологии при изготовлении пломб. Раньше ее применяли для золочения деталей часов и ювелирных изделий, а амальгамы золота и серебра использовались при производстве зеркал.

Живое серебро применяется в качестве катода для извлечения ряда активных компонентов электролитическим путем, а также для переработки вторичного алюминия.

Существуют технологии извлечения золота из россыпей с использованием свойства химического элемента образовывать амальгаму с благородным металлом. Этот метод был широко распространен в Индии, где в местах предполагаемого скопления золота проделывали специальные углубления, в которые заливали металлическую ртуть. Через некоторое время вытаскивали амальгаму, и путем выпаривания извлекали золото.

В нефтеперерабатывающей промышленности для регулировки температурных процессов используют пары ртути. В сельском хозяйстве ее используют для подготовки семян к посеву.

С давних времен и сегодня соли меркурия используют при изготовлении фетра, дублении кожи в качестве катализатора органического синтеза.

В прошлом ртуть не считалась вредным веществом, ее применяли для исцеления от недугов. В Средневековье алхимики использовали меркурий в поисках философского камня и превращения ее в золото.

Ртуть опасна для человека, она токсична и даже в ничтожных концентрациях плохо влияет на иммунную систему, почки, глаза, кожу и пищеварительный тракт.

Кипение и плавление ртути

Переход ртути в жидкое состояние в процессе плавления происходит в специальных термометрах. Технология физико-химических исследований при условиях высоких температур рассматривает давление плавления ртути при разных температурах. Точность опытов обеспечивает применение на практике свойств химического элемента № 80.

Для измерения температуры выше +360°C пользуются термопарами или специальными термометрами, в которых пространство надо ртутью заполнено газом. С целью повышения температуры кипения металла в капилляр надо ртутью закачивают азот. При давлении 30 атмосфер температурный градиент увеличивается до +600°C.

Такого типа термометры требуют постепенного нагрева. Нижним пределом такого измерительного прибора является температура перехода живого серебра в твердое состояние.

Теплоемкость металла с увеличением температуры последовательно уменьшается и после определенного порога температурного градиента начинает медленно расти. Это свойство и жидкое состояние роднит ртуть с водой.

Токсикология ртути

Ртуть и все её соединения ядовиты. Воздействие ртути — даже в небольших количествах — может вызывать серьёзные проблемы со здоровьем и представляет угрозу для внутриутробного развития плода и развития ребёнка на ранних стадиях жизни. Ртуть может оказывать токсическое воздействие на нервную, пищеварительную и иммунную системы, а также на легкие, почки, кожу и глаза. ВОЗ рассматривает ртуть в качестве одного из десяти основных химических веществ или групп химических веществ, представляющих значительную проблему для общественного здравоохранения.

Наиболее ядовиты пары́ и растворимые соединения ртути. Сама металлическая ртуть менее опасна, однако она постепенно испаряется даже при комнатной температуре. Пары могут вызвать тяжёлое отравление. Ртуть и её соединения (сулема, каломель, киноварь, цианид ртути) поражают нервную систему, печень, почки, желудочно-кишечный тракт, при вдыхании — дыхательные пути (а проникновение ртути в организм чаще происходит именно при вдыхании её паров, не имеющих запаха). По классу опасности ртуть относится к первому классу (чрезвычайно опасное химическое вещество). Опасный загрязнитель окружающей среды, особенно опасны выбросы в воду, поскольку в результате деятельности населяющих дно микроорганизмов происходит образование растворимой в воде и токсичной метилртути, накапливающейся в рыбе. Ртуть — типичный представитель кумулятивных ядов.

Органические соединения ртути (диметилртуть и др.) в целом намного токсичнее, чем неорганические, прежде всего из-за их липофильности и способности более эффективно взаимодействовать с элементами ферментативных систем организма.

Биологическое воздействие ртути на живые организмы

Температура ртути нужна достаточно низкая, чтобы перейти в парообразное состояние. Данный процесс начинается уже при 25оС, то есть при обычной комнатной температуре. В этом случае нахождение живых организмов в помещении становится опасным для здоровья.

Так, металл способен проникать внутрь существ через:

  • кожные покровы, неповрежденные, совершенно целые;
  • слизистые оболочки;
  • дыхательные пути;
  • пищеварительные органы.

Оказавшись внутри, пары ртути включаются в общий кровоток, а затем вступают в синтезы белковых и других молекул, образуя с ними соединения. Так происходит накопление вредного металла в печени и костях. Из мест хранения металл снова может включаться в обменные процессы, синтезы и распады, вызывая медленную интоксикацию организма, сопровождающуюся самыми тяжелыми последствиями.

Выводится из органов достаточно медленно и под действием катализаторов, адсорбентов. Например, молока. Основные жидкости, через которые осуществляется вывод металла в окружающую среду:

  • слюна;
  • желчь;
  • моча;
  • продукты желудочно-кишечного тракта.

Различают две основные формы отравления данным веществом: острая и хроническая. Каждая имеет свои особенности и проявления.

Болезнь Минаматы (отравление ртутью)

С 1953 по 1965 года в японском городе Минамата от отравления ртутью умерло несколько десятков человек, еще несколько сотен получили тяжелые отравления. Было установлено, что отравление произошло в результате потребления рыбы с высоким содержанием ртути. В океан этот металл попал в результате неконтролируемых выбросов одной нефтяной японской фирмы.

Дело в том, что организм рыб не способен выводить ртуть и постепенно ее аккумулирует. Причем наибольшие концентрации ртути находятся в организме рыб, расположенных на вершине пищевой цепочки. У хищников, например, акулы или окуня, концентрации ртути могут в десятки раз превышать аналогичные показатели у нехищных рыб.

Предостережение о контактах со ртутью

Даже микродозы ртути при контакте с организмом способны сделать человека инвалидом:

  • Попадая через дыхательные пути, вещество поражает легкие, затем центральную нервную систему и мозг. Далее – остальные внутренние органы и системы.
  • Опасность представляет свойство металла накапливаться в живых организмах (особенно рыбе, других морепродуктах).
  • Попав в организм, выводится очень медленно.

Ртуть и все ее соединения отнесены к первому классу опасности. Безопасной дозы для человека не существует.

Содержание вещества регулируется санитарными нормами. Предельно допустимые концентрации в населенных пунктах или жилых помещениях – 0,0003 мг на кубометр.

 

Источники:

  • https://chistiy-timashevsk.ru/othody/kakova-temperatura-plavleniya-rtuti.html
  • https://ometallah.com/plavlenie/rtuti-i-temperatura.html
  • https://chem.ru/rtut.html
  • https://jgems.ru/metally/rtut
  • https://coppeer.ru/kakaja-temperatura-plavlenija-rtuti

Оцените статью:
[Всего голосов: 0    Средний: 0/5]